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The evolution of Tollmien-Schlichting waves near a 
leading edge. 

Part 2. Numerical determination of amplitudes 

By M. E. GOLDSTEIN, P. M. SOCKOL AND J. SANZ 
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio 44135 

(Received 19 August 1982 and in revised form 17 November 1982) 

It was shown in Part 1 that the amplitude of the spatially growing Tollmien- 
Schlichting wave generated by a time-harmonic free-stream disturbance is related 
to the coefficient multiplying the lowest-order Lam & Rott asymptotic eigensolution 
of the unsteady boundary-layer equation. I n  this part we use a numerical solution of 
the unsteady boundary-layer equation to  determine that coefficient for the case of 
a uniformly pulsating stream. 

1. Introduction 
In  Part 1 of this paper (Goldstein 1983) i t  was shown that, in the limit 

c = (vw/V,)t -+ 0, the unsteady motion induced in a laminar boundary layer by a 
small-amplitude free-stream disturbance of frequency w and inverse spatial scale 
O ( w / U , ) ,  where U ,  is the upstream mean flow velocity and v is the kinematic 
viscosity, is governed by the linearized unsteady boundary-layer equation in the 
region near the leading edge where the normalized streamwise distance from that edge 
x = wx+/ U ,  is O( 1). The solution to this equation asymptotically approaches a Stokes 
shear-wave-type solution plus a linear combination of asymptotic eigensolutions as 
x + co . The Stokes-type solution is independent of the behaviour of the full unsteady 
boundary-layer solution, which describes the motions in the upstream region where 
x < O(1). The solution in this latter region affects the asymptotic solution only 
through the coefficients in the linear combination of asymptotic eigensolutions, which 
are in fact completely determined by this upstream solution, and, since the latter is 
proportional to  the amplitude of the free-stream disturbance, the coefficients of the 
asymptotic eigensolutions also have this property. 

Only the asymptotic eigensolutions of Lam & Rott (1960) were studied. They were 
shown to be non-uniformly valid in x when considered as solutions to the full 
Navier-Stokes equations - the unsteady motion in the downstream region, where 
x1 = c2x = 0(1), being governed by the Orr-Sommerfeld equation and not the 
unsteady boundary-layer equation, which determines the asymptotic eigensolutions. 
However, we showed that the Tollmien-Schlichting wave solutions of t,he former 
equation match, in the matched-asymptotic-expansion sense, onto the Lam & Rott 
asymptotic eigensolutions and are consequently the natural continuations of these 
solutions into the downstream region. The Tollmien-Schlichting waves are given 
by equation (6.1) of part 1 in high-Reynolds-number slowly varying approximation 
appropriate to the c + 0 limit that is of interest here. This equation can be written 
as 
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where we have introduced the new slowly varying amplitude function 

A,(x,) = A(x,) (2XJ9. 

and multiplied the result by the O(1) constant C,. Explicit formulas were given for 
all terms in this equation except the constant C,. But, when A is normalized in the 
manner implied by (6.2) of part 1, C ,  is the same as the constant that  multiplies the 
corresponding asymptotic Lam & Rott (1 960) eigensolution of the unsteady boundary- 
layer equation and must therefore be determined by ‘patching’ the numerical 
solution of this equation onto its large-x asymptotic expansion. 

Ackerberg & Phillips (1972), who studied the case of a uniformly pulsating stroam, 
attempted to do this by fitting the numerically calculated fluctuating displacement 
thickness to the asymptotic expansion of this quantity, which, as we already 
indicated, consists of a Stokes shear-wave-type expansion plus a linear combination 
of asymptotic eigensolutions. They determined the numerical constants in this 
combination by requiring that the asymptotic solution agree with the numerical 
solution a t  certain preselected points. They used only the Lam & Rott eigensolutions 
and therefore implicitly assumed that these eigenfunctions are, in some sense, 
complete. This cannot, of course, be proved, but even if completeness is assumed their 
procedure is subject to a number of criticisms, which were pointed out to  the first 
author by a referee of part 1 .  

First, as indicated in part 1, Ackerberg & Phillips’ formulas for the asymptotic 
eigenfunctions are in error owing to the omission of a factor of xr. Secondly, their 
choice of the eigenfunctions to  be included was somewhat ad hoc in that  they omitted 
the lowest-order asymptotic eigenfunction, which, incidentally, is the one of primary 
interest in the present context. Thirdly, and possibly most seriously, they obtained 
different values for the constants that  multiply the asymptotic eigenfunctions 
depending on whether they matched the in-phase or out-of-phase component of the 
displacement thickness. 

One purpose of the present paper is therefore to re-do their calculation in a way 
that overcomes these objections. Since, as we indicated, our interest here is in the 
coefficient of the lowest-order asymptotic eigenfunction, which is the one that 
exhibits the most rapid decay, but which is also the one that matches onto the only 
Tollmien-Schlichting wave that eventually exhibits spatial growth, the success of our 
procedure depends on the asymptotic expansion being numerically significant a t  
relatively small values of x. The numerical evidence indicates that  this is the case 
when the optimal approximation for the Stokes-layer expansion is used. 

But even when all this is done the procedure is, a t  best, uncertain and it is highly 
desirable to check the coefficient of the lowest-order asymptotic eigenfunction by 
using a completely independent method to  determine its value. To this end, we use 
the result, established by Lam & Rott (1960), that  the solution of the unsteady 
boundary-layer equation is an analytic function of the independent variable x, when 
x is extended into the complex plane. The numerical solution of the unsteady 
boundary-layer equation can therefore be analytically continued into the region of 
the complex x-plane where the lowest-order asymptotic eigensolution (which is 
subdominant for real 2) is dominant. It is then quite easy to find the coefficient of 
this eigenfunction, but one must be sure that no Stokes discontinuities are introduced 
in the process. This turns out to be the case in the present analysis, as demonstrated 
in $2 and as evidenced by the fact that the coeflicient obtained by the analytic 
continuation procedure is  quite close to the coeflicient obtained from the patching procedure 
described ahow. 
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These calculations involve the numerical solution of the unsteady boundary-layer 
equation. Our algorithm, which is simpler than the one used by Ackerberg & Phillips 
(1972) and which we found to be quite accurate, is described in appendix A. 

Brown & Stewartson (1973a) found an infinite set of eigensolutions of the unsteady 
boundary-layer equation that achieve their peak values just outside the steady 
boundary layer and are therefore, on the face of it, quite different from those of Lam 
& Rott (1960). However, we show in $3  that  the Lam & Rott eigenfunctions are 
non-uniformly valid with increasing order and we argue that the Brown & Stewartson 
eigenfunctions may be obtainable by re-expanding (for large x) an appropriate sum 
of the Lam & Rott eigenfunctions provided that the latter are first rendered uniformly 
valid. 

In fact, the Brown & Stewartson ( 1 9 7 3 ~ )  expansion requires that (lnix); be much 
greater than unity rather than the much weaker condition x 9 1 required for the 
validity of the Lam & Rott eigenfunctions. We therefore expect that the former will 
only become valid much further downstream than the Lam & Rott eigenfunctions. 

On the other hand, the higher-order Lam & Rott eigenfunctions, which become 
increasingly poor asymptotic approximations as their order increases, become more 
important relative to the lower-order ones as the streamwise distance increases, since 
their decay rate decreases with increasing order. We therefore expect that  the Lam 
& Rott eigenfunctions may be sort of intermediate asymptotics that  best describe 
the numerical solution a t  moderately large values of x. 

The present work completes the solution of the 'receptivity' problem described in 
$1 of part 1. A completely numerical solution was previously given by Murdock 
(19801, but he had to impose an artificial upstream boundary condition a t  a finite 
distance from the leading edge. Related analytical studies were carried out by Rogler 
& Reshotko (1977) and by Tam (1981). 

2. Numerical determination of coefficients 
I n  this section we estimate the coefficients of the lower-order Lam & Rott (1960) 

asymptotic eigenfunctions for an infinitely thin flat plate in a uniformly oscillating 
stream (with velocity U ,  + u, eciwt where u, = constant) ; first by modifying the 
Ackerberg & Phillips (1972) procedure to eliminate the faults listed in $1 ,  and 
secondly by analytically continuing the numerical solution into the complex plane. 

To carry out the first procedure, we extend the Stokes-layer expansion one order 
higher than Ackerberg & Phillips (1972). This is easily accomplished by continuing 
their procedure. We therefore merely give the final result for the fluctuating 
displacement thickness 6" eciwt, which, in the notation of part 1, is given by 

= e3 lim ( (29$~ ,7 -$~) .  
11-00 

The contribution 6& from the Stokes-layer expansion is given by 

l + i  ip 13Ui .39U; 4051(1-i)U? 
+2-- + ~ + 0 ( ~ - 4 ) ,  (2 .2)  a,*, 

e3u,(2x)4 = 2x4 2x 32 x2 64 x3 2048 xz 

where p = lim ( 7 F - F )  = 1.21678, u; is given by (3.8) of part 1, and it should 
7- w 

15-2 
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FIGURE 1. Difference between fluctuating displacement thickness amplitude calculated from 
numerical solution and that calculated from asymptotic Stokes-type solution. 

be recalled that our result is the complex conjugate of that  of Ackerberg & Phillips 
(1972),t since our time dependence enters through the factor eciwt. 

As pointed out by Bender & Orszag (1978, p. 94), the 'optimal asymptotic 
approximation' is obtained by finding the smallest term in the expansion and then 
omitting i t  along with all higher-order terms. This means that we should neglect all 
0(xc2) terms in (2.2) when 1 < x < 1.73, but retain the xc2 term and neglect all O ( X - ~ )  
when 1-73 < z < 2.32. The error is small enough when x > 2.32 so that we need not 
be overly concerned with the optimal approximation in this region. 

The unsteady boundary-layer equation was solved numerically by using the 
procedure described in appendix A. It is quite similar to, but somewhat simpler than, 
the one used by Ackerberg & Phillips (1972). We used the result to  calculate 
S*/e3u,(2x)i, and in figure 1 we plot the real and imaginary parts of the difference 
between this result and that predicted by the Stokes-layer expansion (2.2). The 
discontinuity at x z 1-73 is due to the fact that  we used the optimal approximation 
for S & / ~ ~ Z L , ( ~ X ) ~ .  

Following Ackerberg & Phillips, we fitted these curves numerically a t  six equally 
spaced points by using a linear combination of the Lam & Rott asymptotic 
eigenfunctions. However, we worked with the corrected eigenfunctions of part 1 and 

t There is a factor of 4 2  missing in the O(a5) term of Ackerberg & Phillips' equation (3.39). Also 
the last member of their equation (3.13) should be omitted and the 5 on the right-hand side of their 
equation (3.14) should be replaced by a 4. 



Tollmien-Schlichting waves near a leading edge. Part 2 447 

Order 
n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Eigenvalue 
5, 

- 1.0188 
- 3.2482 
-48201 
-6.1633 
- 7'3722 
- 8.4885 
- 9.5354 
- 10538 
- 11.475 
- 12.385 

Exponent 
7 

- 0.6921 3 
- 027037 

071653 
2.2674 
4.3823 
7.0613 

10.304 
14111 
18.482 
23.416 

TABLE 1. Exponents for coefficients of first 10 Lam & Rott asymptotic eigenfunctions 

Order 
n 
1 
2 
3 
4 
5 
6 

Coefficients 
~ 

Re C J U ,  Im Cn/u, 

- 042041 0.81804 
1.15536 0 18063 

-0.24266 0.13681 
0'00811 -0'01426 

-000002 000020 
-000000 -000000 

TABLE 2. Coefficients of asymptotic eigenfunctions obtained from curve fit shown in figure 1 

Coefficients 
Order 
n Re CnIu, Im Cn/u ,  

1 - 045266 082661 
2 1.03376 034942 
3 - 022173 008619 
4 0.00732 - 000986 
5 - 0~00002 00001 1 

TABLE 3. Coefficients of asymptotic eigenfunctions obtained from curve fit of displacement 
thickness difference using only first 5 eigenfunctions 

retained the first six eigenfunctions in the expansion. Moreover, the same complex 
constants were used to fit both the real and imaginary parts. Thus, as can be seen 
from (2.14), (3.7a) and (3.15) of part 1, we fitted the curves by 

where A, = h is given by (3.9) and (3.13) of part 1, and the exponents 7, = 7 of the 
corrected eigenfunctions are given by (3.16) of part 1. This latter formula is simplified 
in appendix B, where it is shown that 7 is a real quantity. The values of 7 
corresponding to the first 10 eigenfunctions are listed in table 1 along with the 
associated roots of (3.13) of part 1. 

The solid circles in figure 1 represent the equally spaced points used for the curve 
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FIGURE 2 .  Stokes lines for asymptotic eigenfunctions of Lam & Rott. 

fit. The resulting values of the coefficients are listed in table 2. It can be seen that 
they decrease rapidly with increasing order. 

We attempted fitting the curve with more than six eigenfunctions, but this led to  
a matrix that was too ill-conditioned to invert. This is due to the fact that the 
contributions from the successively higher-order eigenfunctions tend to become 
more important a t  larger values of x. 

However, we were able to fit the curves with the first five eigenfunctions. The fit 
was not quite as good as when six eigenfunctions were used, but the resulting 
coefficients, which are listed in table 3, were not substantially changed. 

The open circles in figure 1 are calculated from the six-term eigenfunction 
expansion. We believe the agreement is encouraging, but it could probably be 
improved by retaining higher-order terms in the Lam & Rott functions. This can be 
done by extending the analysis of appendix A of part 1. I n  fact, the next highest-order 
terms can easily be calculated once the constant K is found. But this involves 
evaluating some complicated integrals and we have not attempted to do that. 
However, we did introduce the next-highest-order term with K ,  which is primarily 
determined by the solvability condition for the next-order solution, set equal to zero. 
This improved the fit of the imaginary part of S*/u, e3(2x)? a t  both small and large 
values of x. The fit a t  large values of x could probably have been further improved 
if we had been able to use more of the higher-order asymptotic eigenfunctions, but 
as we indicated in Q 1 ,  they are probably quite inaccurate. 

The Stokes lines for the asymptotic eigenfunctions are shown in figure 2. The eigen- 
functions are expotentially small in sector 0,  and the lowest-order eigenfunotion 
decays most rapidly there. However, i t  exhibits the most rapid growth in sector 
0, where the asymptotic eigenfunctions are exponentially large. The eigenfunctions 
do not exist in sector 0. 

In  sector 0 the asymptotic eigenfunctions first appear on the Stokes line arg x = Qn 
along which they undergo their most rapid decay.? They then contribute to the 

t Dingle (1973, pp. 5 1 9 )  points out that Stokes discontinuities must occur in an asymp- 
totic expansion if that expansion is to comply with the variations of the continuous function it 
represents, but these discontinuities, which are manifested by the sudden ,appearance of a new 
asymptotic series, arise in the most efficient and least disruptive way imaginable: they occur along 
the Stokes ray (argz = &r in our case) where the new series is a t  an absolute minimum relative to 
the continuing series (the Stokes shear-wave solutions in our case). 
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FIGURE 3. Ratio of numerical solution t o  u, x lowest-order Lam & Rott  
asymptotic eigenfunction as 5 varies along anti-Stokes line -an. 

solution with the same numerical coefficients throughout this sector and the portion 
of sector 0 lying between the Stokes line argx = -in and the anti-Stokes line 
argx = -4.. (Dingle 1973, p. 12). Brown & Stewartson (19736) demonstrated 
analytically that the complete solution of a simplified asymptotic model of the 
unsteady boundary layer equation behaves in this precise fashion. 

When x is in section 0, the numerical solution should behave like the lowest-order 
asymptotic eigensolution a t  sufficiently large values of 1x1. The ratio of these two 
solutions should, therefore, become independent of x as (x [increases along any radial 
line in this sector. In  figure 3 this ratio is plotted as a function of 1x1 as x varies along 
a radial line slightly to the right of anti-Stokes line arg x = - $7 where the exponential 
growth rate of the eigenfunction is maximum. It can be seen that the ratio changes 
rapidly for 1x1 < 1 but is fairly constant for 1 < 1x1 < 8, even though the numerical 
and asymptotic solutions individually increase by several orders of magnitude when 
1x1 increases by one unit a t  the larger values of 1x1. The variations that occur when 
1x1 > 8 are due to  the fact that  our numerical solution has not converged in this region. 

From figure 3 we estimate that the coefficient of the lowest-order asymptotic 
eigenfunctions is roughly equal to - 0.45 + 0.855.i. Approximately the same value was 
obtained when the integration was carried out along several other radial lines in sector 
0 .  Notice that this number is quite close to the value listed in table 2, which was 
obtained from the curve fit along the positive real axis - indicating that the coefficient 
of the lowest-order asymptotic eigensolution does not change as the solution is 
analytically continued from the real axis into sector 0 .  

3. Validity of Lam & Rott eigenfunctions and connection with Brown & 
Stewartson eigenfunctions 

As we saw in part 1 ,  the Lam & Rott eigcnfunctions, say ~ k R ( x ) ,  were constructed 
by matching an inner wall-layer solution, which applies when rr = ~ ( 2 x ) i  is O(1)  and 
x 9 1, with an outer solution, which applies when 7 = O(1) .  

The inner expansion is expressed in terms of Airy functions whose arguments cb 
are given by (3.11) of part 1 .  Hence, as the order n of the eigenfunctions increases, 
the asymptotic behaviour of the inner solution is achieved a t  larger and larger values 
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of 0-, that is, a t  fixed x the size of the inner region increases with increasing order. 
The value of x must then be increased in order to  reduce the size of this region relative 
to that of the steady boundary layer. The higher-order asymptotic eigenfunctions 
therefore become accurate approximations a t  much larger values of x than do the 
lower-order eigenfunctions. This means that the limit as x + co and the limit as 
n + GO cannot be interchanged. 

Since the asymptotic expansions used to construct the eigenfunctions are associated 
with the limit as x + co with n held fixed while the sum 

co 

involves the limit as n + co with x held fixed, we cannot hope to evaluate this series 
by using the Lam & Rott asymptotic expansions for the eigenfunctions $kR, unless 
the value of this series is  primarily determined by its lowest-order terms. 

The results of $ 2  show that the coefficients C, decrease very rapidly with increasing 
n, but, as we have seen, the lower-order asymptotic eigenfunctions decay more 
rapidly with x than the higher-order eigenfunctions. Hence the sum (3.1) should 
provide the best approximation to  the numerical solution a t  intermediate values of 
x when the asymptotic approximations to $kR are used. We certainly cannot take 

the limit lim S ( x )  unless a uniformly valid approximation of the @kR is first 
2-m 

inserted into (3.1). 
As we indicated in $1, Brown & Stewartson (1973a) obtained a different set of 

asymptotic eigenfunctions, which apply when (In&)+ B 1 and are therefore only valid 
much further downstream than the Lam & Rott eigenfunctions, which apply when 
x % 1. It is therefore not unreasonable to  expect that, conceptually, each Brown & 
Stewartson (1973 a )  eigenfunction can be expressed as a large-2 asymptotic expansion 
of a sum of the form (3.1) in which a uniformly valid approximation for the $kR is 
used. The Brown & Stewartson (1973a) functions would then be determined by the 
‘infinite tail ’ of the series (3.1), which is precisely where the non-uniformly valid Lam 
& Rott expansions break down. Now we have seen that this breakdown occurs 
because the higher-order asymptotic eigensolutions tend t o  move away from the wall 
as their order increases. It is therefore not surprising that Brown & Stewartson’s 
functions are centred at the outer edge of the steady boundary layer. They will 
probably match onto the continuous spectrum of the Orr-Sommerfeld equation - but 
this is only speculation a t  this point. 

4. Concluding remarks 
I n  part 1 we matched the spatially growing Tollmien-Schlichting wave solution 

of the Orr-Sommerfeld onto a certain asymptotic eigensolution of the unsteady 
boundary-layer equation and thereby related the amplitude of this wave to that of 
the eigensolution. In  this part we used a numerical solution of the unsteady 
boundary-layer equation to  relate the amplitude of the asymptotic eigensolution, and 
consequently of the Tollmien-Schlichting wave, to  that of the imposed free-stream 
disturbance for the special case of a uniformly pulsating stream. The ideas of this 
paper can be extended to  other more complex bodies and free-stream oscillations. 
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Appendix A. Numerical solution of the unsteady boundary-layer equation 
I n  this appendix we present a finite-difference method for solving the unsteady 

boundary-layer equation (3.2) of part 1. Our procedure is similar to, but somewhat 
simpler than, the one used by Ackerberg & Phillips (1972). 

G 5 41.,/(22)4, (A 1 )  
Introducing the new variable 

(3.2) can be rewritten as the pair 

G7 - W = 0, 

1 (A 3) W7,+FW7,+F”G-2~ F‘W,-F”G,- --i(W-urn) durn = 0. [ dx 

Following Ackerberg & Phillips (1972), we introduce the mesh points (x,, qj), for 
x 3 0, 0 < q < q J ,  and use the notation 

x1 = 0, x,+~ = x , + k  (n  = 1 , 2 , 3 ,  ...), (A 4) 

q l = O ,  ~ j + l = q j + h  G =  1 , 2 , 3  ,..., J-1). (A 5) 

Only two x-stations (n, n+ 1)  have to be considered a t  once, and, again following 
Ackerberg & Phillips, we denote values at the old station x, by overbars. Then, for 
any dependent variable q5, we use the abbreviated notation 

q5 = $(%+1, V j ) ,  d, = q5(%, V j ) ,  (A 6) 

r$ = $($+$). (A 7)  

Introducing the difference operators 

q f j  = & + I -  2fj - f j - l ,  

P, S , f j  = U j + l  --fj-lL 
(A 3) can be approximated by 

1 2 
h2 k 

- - (S ;5+hqLqS , )  q -F;Gj+  -2[2F;(%- w,) 
- 2 F y ( @ j - q )  -ik( %.--Gm) -2(.i;,  -fim)] = 0 + O(h2,  k2). (A 8) 

Using centred differences, approximating (A 2) at  the point (i, qj+g) and collecting 
terms in (A 8),  we obtain, f o r j  = 1,2 ,  ..., J, 

Gj = GjP1 +ah( W; + k&l), (A 9) 

- A . W .  9 9-1 +B.W.-Cj@. 3 3 ?+I - 0 . G .  3 3 = E .  3 ’  (A 10) 

(A 1 1 )  

Aj G S ( l  -$hl’$), Cj E S(l +&Z$), (A 12) 

Bj E 2(S+8+22Fj’), (A 13) 

Dj = F j ” ( k + 4 i ) ,  (A 14) 

(A 15) 

where we have put k a=--  0 = - i k i ,  
h2 ’ 

E~ = 4 q ~ ;  ~ - - - ~ j ” ~ 7 + 2 2 8 . i i , + 4 ~ ( ~ , - - ~ ) .  
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The appropriate initial condition is discussed by Ackerberg & Phillips (1972). It 

(A 16) 
Starting from this condition, we can march downstream and solve (A 9) and (A 10) 

a t  x = x,+~ for dj and q., j = 1,2, ..., J, using their known values a t  the previous 
station x = 5,. The boundary conditions given by (3.3) and ( 3 . 5 )  of part 1 require 
that the solution satisfy 

requires that we put 

Gj = i(qj  Fi+E;) (XI = O , j  = I , 2 ,  ..., J ) .  

(A 17)  

w, = Gm.  (A 18) 

G, = w1 = 0, 

Once this solution is found, we can use (A 7 )  to calculate 4, which is the new value 

In order to  solve (A 9) and (A 10) at x = 2, we introduce the Ansatz 
of 6 for the calculation a t  the next x-step. 

W; = Rj + Sj + Qjpl (A 19) 

and use i t  along with (A 9) to  eliminate y.+l,(2j in (A 10). This yields 

- A j  l$-l+Bj q-Cj(Rj+l+Sj+l q)-(Dj+C'jyi+l) [Gj- l+ ih($ .+  qP1)] = Ej.  

Comparing this with (A 19) shows that the Ansatz will hold if we put 

pj Dj+CjTj+I, (A 20) 

It follows that we can calculate q. and Qj from the following algorithm. First, we 
satisfy (A 18) by setting R, = Goo and S ,  = TJ = 0. Then we usc (A 20)-(A 24) to 
calculate successively Rj, Xj and T j  beginning a t  j = J -  1 and ending a t  j = 2. 

and then 
use (A 9) and (A 19) to calculate successively dj and beginning a t j  = 2 and ending 
a t j  = J-1. 

Once these quantities are known, we can use (A 17)  to calculate @, and 

Appendix B. Simplification of formula for 7 

Using (3.7b) of part I to  eliminate go and gh in the denominator of (3.16) of Part 
1 and integrating both the numerator and denominator of the result by parts yields 

j w d a  
0 

4 J w2cdg  
0 

Using the equation preceding (A 7 )  of part 1 to eliminate g r  and then using (A 16) 
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to  eliminate (ha+i) w in the result yields 

Srn [ a2g; w” + w (g 9,” - 

4 f 

d n  [(a‘g;)“ + - g: - 29; d a  
-Tu; 0 - 12 1 - -- - 

(B1) 
jr w d a  w2a d a  

0 

Differentiating the second line of (3.7) of part 1 shows that 

J w d a  
0 

Using this to  eliminate gs in (B 1) yields 

Hence upon integrating by parts we obtain 

w2a d a  

Using (3.10), (3.11) and (3.14) ofpart 1, introducing the new variable of integration 

e+l 

z = - a  
P i  

in place of a, and deforming the new integration contours to  lie along the real axis, 
we obtain 

(B 2) 
1 
4 

= -- 

which shows that T is real. 
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